
Automatic Evaluation of Robustness and Degradation in
Tagging and Parsing

Johnny Bigert, Ola Knutsson, Jonas Sjöbergh
Department of Numerical Analysis and Computer Science

Royal Institute of Technology, Sweden
{johnny,knutsson,jsh}@nada.kth.se

Keywords: automatic evaluation, robustness, spelling errors, tagging, shallow parsing

Abstract

We address the topic of automatic evaluation
of robustness and performance degradation in
parsing systems. We focus on one aspect of ro-
bustness, namely ill-formed sentences and the
impact of spelling errors on the different com-
ponents of a parsing system. We propose an
automated framework to evaluate robustness,
where ill-formed and noisy data is introduced
using an automatic tool and fed to the parsing
system. With increasing levels of noise, the per-
formance of a system will inevitably degrade,
and the question is to what extent? The ex-
periments show a graceful degradation in per-
formance for both state-of-the-art taggers used
and a Swedish shallow parser. The automated
nature of the evaluation allows easy and repro-
ducible evaluation of the individual components
of a parsing system.

1 Introduction

Comparable and reproducible evaluations and ex-
periments are important foundations for research.
Valid and comparable evaluation of NLP-systems
is often hard to achieve without a great portion
of manual work. Many languages lack resources
for evaluation and even for languages with avail-
able material, new types of evaluations based on
existing material need a lot of manual labor. Fur-
thermore, manual interference with the evaluation
material may in fact decrease the validity of the
evaluation.

In this paper we present an automatic evalu-
ation method focusing on the robustness of pars-
ers for syntactic analysis. The robustness of a
parser is defined here as robustness against ill-
formed input, which is only one aspect as pointed
out by Menzel 95. The proposed evaluation tech-
nique is fully automatic, with no need for manual
annotation or inspection. It relies on a general
tool, which introduces different kinds of errors
into a text. The errors can be spelling or gram-
matical errors, but we have focused on spelling er-
rors resulting in non-existing words to avoid some
ambiguity problems, as explained later.

To demonstrate the evaluation method, we ap-
plied it on a shallow parser for Swedish. The
experiments are presented as a glass box evalu-
ation, where the performance of the over-all sys-
tem is presented as well as the performance of
the components, such as part-of-speech taggers.
All tests are conducted with various levels of er-
rors introduced, under which the system perform-
ance degradation is measured. Since this paper
focuses on evaluation methodology, we do not ad-
dress how the introduced errors affect syntactic
structure. Nevertheless, automatic evaluation of
the effects on syntactic structure is indeed an in-
teresting topic for future work.

The main contribution of this paper is an auto-
matic method for the evaluation of robustness and
degradation in tagging and parsing. The eval-
uation method is useful for determining the per-
formance impact from individual components and
thus, is suitable for e.g. on-going development of
parsing systems. We argue that introducing noise
in text with automatic means is a valid and re-
liable technique for evaluating a system’s robust-
ness.

This paper consists of five parts. To begin
with, we discuss evaluation methods for pars-
ing and subsequently, the proposed method for
automatic evaluation is presented. In the third
part, the shallow parser used in the experiments
is briefly outlined. In the fourth section, experi-
mental methodology and the experiments are de-
scribed. Lastly, we present the results.

1.1 Parser Evaluation

Parsers have been evaluated in the parser com-
munity using different methods over the years,
from simple test suites to treebanks (for a com-
prehensive overview see Carroll et al. 98). A pre-
requisite for the evaluation method presented here
is an annotated corpus, preferably a treebank.
For Swedish, there exist small forests annotated
with functional structure (Nivre 02). Unfortu-

nately, none of these were suitable for our experi-
ments, which are based on an annotation scheme
for constituency. We adopted the IOB tag set
(Ramshaw & Marcus 95) for row-based phrase as-
signment of Swedish constituents.

Using different text genres for testing is one way
of evaluating robustness (see e.g. Li & Roth 01).
The problem with such an evaluation is the
lack of control of the differences between the
genres; is sports harder to parse than economical
news? Another way is to compare well-written
and proofread texts with more noisy texts. One
problem with such a comparison is the difficulty
in comparing the two text types without manual
analysis of the errors. In the following section we
will present a method that compares proofread
text and text with different degrees of automat-
ically introduced noise. The method is one way
of evaluating a specific kind of robustness of an
NLP-system.

2 The Proposed Method

When processing unrestricted natural language
data, rare and malformed constructions and
spelling errors occur quite frequently. We want
to assess the degree to which a parser can handle
these difficulties, and to which degree the analysis
fails for the context surrounding a deficiency. To
this end, we require a source of texts with annot-
ated language errors. One problem is that an-
notated resources containing errors do not exist
for all languages. Furthermore, the texts must
also be annotated with parse information to be
able to serve as a comparison to the output of a
parser. Where data of sufficient size exists, it is
often not sufficiently annotated in terms of parse
trees. Another problem with annotated errors is
the difficulty in determining, for a given error,
what the corrected text should be. Normally, we
do not know what the intention of the writer was,
which introduces further ambiguity in the parse
trees.

2.1 Introducing Errors

To avoid the problems mentioned, we decided to
start from correct text and from there, introduce
errors using an automated tool, Missplel (Bigert
et al. 03).

Missplel is a general-purpose error introdu-
cer, able to introduce most error types produced

by humans, such as spelling errors resulting in
existing and non-existing words, with or without
a change in part-of-speech (PoS) tag, competence
errors such as sound-alike errors and context sens-
itive errors such as feature agreement errors and
word order errors.

Most of these error types have the effect of al-
tering the original semantics of the sentence, es-
pecially when a word is misspelled, resulting in
an existing word. This is indeed a problem since
the parse tree of the new sentence may differ from
that of the original sentence. Thus, there is a pos-
sibility that the output of the parse system is in
fact correct even though it differs from the an-
notated parse tree. We approach this problem
by restricting the introduced errors to spelling er-
rors that result in non-existing words only. Hence,
the new sentence does not have a straightforward
interpretation. Nevertheless, the most plausible
interpretation of the new sentence is that of the
original text.

During introduction of errors, every word con-
taining alphanumeric characters has an equal
chance of being misspelled. Given a word to mis-
spell, we choose a position in the word randomly.
To simulate performance errors caused by key-
board mistypes, we choose between insertion, de-
letion and substitution of a single letter as well as
transposition of two letters (Damerau 64). When
substituting a letter for another, letters close on
the keyboard are more often mistaken than those
far apart. The situation is similar for insertion,
since this is often caused by pressing two keys
at the same time. Thus, keys closer on the key-
board have a higher confusion probability when
substituting and inserting. For further details,
see Bigert et al. 03.

The automatic introduction of spelling errors
permits us to choose the percentage of errors in
a text. It also allows us to choose any text or
text type provided that it is annotated with parse
trees. Furthermore, it allows for an n-iteration
test to determine how different phrase types de-
grade with increasing number of errors, and thus,
minimizing the influence of chance.

2.2 Evaluation

To gather the necessary data, we used an auto-
mated evaluation tool called AutoEval (Bigert
et al. 03), which is a general purpose evaluation

Viktigaste (the most important) APB|NPB CLB
redskapen (tools) NPI CLI
vid (in) PPB CLI
ympning (grafting) NPB|PPI CLI
är (is) VCB CLI
annars (normally) ADVPB CLI
papper (paper) NPB|NPB CLI
och (and) NPI CLI
penna (pen) NPB|NPI CLI
, 0 CLB
menade (meant) VCB CLI
han (he) NPB CLI
. 0 CLI

Figure 1: Example sentence showing the IOB
format.

((CL (NP (AP Viktigaste) redskapen)
(PP vid (NP ympning))
(VC är)
(ADVP annars)
(NP (NP papper) och (NP penna)))

(CL ,
(VC menade)
(NP han)) .)

Figure 2: The text from Figure 1 in a corres-
ponding bracketing format.

tool for structured data (e.g. row-based data or
XML) configurable using a script language.

The output from the GTA parser was given
in the so-called IOB format (Ramshaw & Mar-
cus 95). See Figure 1 and 2 for a sentence with
phrase labels and clause boundaries in the IOB
and bracketing format, respectively. As an ex-
ample, NPB|PPI means that the beginning (B) of
an noun phrase (NP) is inside (I) a prepositional
phrase (PP). Thus, the rightmost phrase is the
topmost node in the corresponding parse tree.
The phrase types are explained in Section 3.

Using AutoEval, we gathered information
on tag accuracy, full row parse accuracy, clause
boundary identification accuracy as well as preci-
sion, recall and F-scores for all phrase types.

The statistics for individual phrase types were
calculated as follows. Given a phrase type to eval-
uate, all other phrases were removed. The same
was done for the correct, annotated parse, and
the results were then compared. The parser was
successful if and only if they were identical. For
example, we are looking at phrases of type NP.
If the correct parse is APB|NPB|NPI (an adject-
ive phrase in a noun phrase inside another noun
phrase), the parse NPB|APB|NPI would be correct
since the adjective phrase is ignored, while the
parse APB|NPI|NPI would be incorrect since the
leftmost NP differs.

Since many parsers rely heavily on the perform-
ance of a part-of-speech tagger, we include several
taggers with different behavior and characterist-
ics. Apart from taggers representing state-of-the-
art in part-of-speech tagging, we also include a
perfect tagger and a baseline tagger. The per-
fect tagger does nothing more than adopt the ori-
ginal tags found in the annotated resource. The
baseline tagger is constructed to incorporate little
or no linguistic knowledge and was included to es-
tablish the difficulty of the tagging task.

Parsing different texts may result in different
accuracy for the parser at hand. To provide a clue
to the inherent difficulty of a text, we require a
baseline for the parsing task. The perfect tagger,
the baseline tagger and the baseline parser are
further discussed in the experiments section.

In the experiments below, we use six error levels
(0%, 1%, 2%, 5%, 10%, 20%). For a given error
level p, we introduce spelling errors (resulting in
non-existing words only) in a fraction p of the
words. This procedure is repeated n = 10 times
to mitigate the influence of chance and to determ-
ine the standard deviation of the accuracy and
F-scores.

With increasing amounts of erroneous text, the
performance of the parser will degrade. In order
to be robust against ill-formed and noisy input,
we want the accuracy to degrade gracefully with
the percentage of errors. That is, for a parser
relying heavily on PoS tag information, we aim for
the parsing accuracy to degrade equal to or less
than the percentage of tagging errors introduced.
Of course, this is not feasible for all phrase types.
For example, when the infinite marker or verb
is misspelled, an infinitival verb phrase will be
difficult to identify.

3 A Robust Shallow Parser for
Swedish

Most parsers for Swedish are surface oriented,
and two of them identify constituency structure.
One uses machine learning (Megyesi 02) while the
other is based on finite-state cascades (Kokkina-
kis & Johansson-Kokkinakis 99). Furthermore,
two other parsers identify dependency structure
using Constraint Grammar (Birn 98) and Func-
tional Dependency Grammar (Voutilainen 01).
There is also a deep parser developed in the CLE
framework (Gambäck 97). We recently developed

a rule-based shallow parser called Granska Text
Analyzer (GTA) (Knutsson et al. 03) and due
to availability, GTA was used in the experiments.
Unfortunately, none of the Swedish parsers could
serve as a comparison, since none of them used
a comparable constituency structure to that of
GTA.

GTA is rule-based and relies on hand-crafted
rules written in a context-free formalism. The
parser selects grammar rules top-down and uses
a passive chart. The rules in the grammar are
applied on PoS tagged text, either from an in-
tegrated tagger or from an external source. GTA
identifies constituents and assigns phrase labels.
However, no full trees with a top node are built.

The analysis is surface-oriented and identifies
many types of phrases in Swedish. The ba-
sic phrase types are adverbial phrases (ADVP),
adjective phrases (AP), infinitival verb phrases
(INFP), noun phrases (NP), prepositional phrases
(PP) and verb phrases (limited) and chains
(VP and VC). The internal structure of the
phrases is parsed when appropriate and the
heads of the phrases are also identified. PP-
attachment is left out of the analysis since the
parser does not include a mechanism for resolving
PP-attachments. The disambiguation of phrase
boundaries is primarily done within the rules, and
secondly using heuristic selection and disambigu-
ation rules.

In addition to the parsing of phrase structure,
clause boundaries (CLB) are detected, resembling
Ejerhed’s algorithm for clause boundary detection
(Ejerhed 99).

The parser was designed for robustness against
ill-formed and fragmentary sentences. For ex-
ample, agreement is not considered in noun
phrases and predicative constructions (Swedish
has a constraint on agreement in these construc-
tions). By avoiding the constraint for agreement,
the parser will not fail due to textual errors or
tagging errors. Tagging errors that do not con-
cern agreement are to some extent handled using
a set of tag correction rules based on heuristics on
common tagging errors.

4 Experiments

We used the toolbox described in Section 2 to
evaluate the rule-based parser for Swedish. We
used the Stockholm-Ume̊a corpus (SUC) (Ejer-

hed et al. 92) and chose six random texts (aa02,
ac04, je01, jg03, kk03 and kk09) from three differ-
ent categories, totally amounting to 15 000 words.
The text categories were press articles (a), sci-
entific journals (j) and imaginative prose (k). The
part-of-speech tag set contained 149 tags. As
there exists no constituency tree-bank for Swedish
at present, the texts were annotated for tree struc-
ture. The texts were first run through the parser
and then carefully corrected by a human annot-
ator. The tokenization and sentence boundaries
was determined by the corpus.

Since the performance of the parser depends
heavily on the performance of the part-of-speech
tagger, we compared tagged text from four dif-
ferent sources: the original corpus tags, a hidden
Markov model (HMM) tagger, a transformation-
based tagger and a baseline tagger. The tagger
Corpus used the original annotations in the SUC
corpus, which we assume to have 100% accur-
acy. The HMM tagger used was TnT (Brants
00), hereafter denoted TnT. The transformation-
based tagger (Brill 92) used was fnTBL (Ngai &
Florian 01), denoted Brill. The baseline tag-
ger called Base chose the most frequent tag for a
given word and, for unknown words, the most fre-
quent tag for open word classes. All taggers were
trained on SUC data not included in the tests.

To determine the difficulty of the chosen texts,
we constructed a baseline parser. To this end,
we adopted the approach provided by the CoNLL
chunking competition (Tjong Kim Sang & Buch-
holz 00), i.e. for a given part-of-speech tag, the
parse chosen was the most frequent parse for that
tag. Given a PoS tagged text, the data was di-
vided into ten parts. Each part was parsed by
using the original annotation for the other nine
parts as training data. Furthermore, to determine
the difficulty of the clause boundary identification
we devised a baseline clause identifier simply by
assigning CLB to the first word of each sentence
and CLI to the other words.

Thus, we had four taggers (Base, Brill,
TnT and Corpus) and two parsers (GTA and
baseline). For each combination of tagger and
parser, we ran an n-iteration test (using n = 10)
at each error level (0%, 1%, 2%, 5%, 10% and
20%). In each test, we extracted information
about tagging accuracy, parsing accuracy, clause
boundary identification and phrase identification
for the individual phrase categories ADVP, AP,

Tagger 0% 1% 2% 5% 10% 20%
Base 85.2 84.4 (0.9) 83.5 (1.9) 81.2 (4.6) 77.1 (9.5) 69.0 (19.0)
Brill 94.5 93.8 (0.7) 93.0 (1.5) 90.9 (3.8) 87.4 (7.5) 80.1 (15.2)
TnT 95.5 95.0 (0.5) 94.3 (1.2) 92.4 (3.2) 89.5 (6.2) 83.3 (12.7)

Table 1: Accuracy in percent from the tagging task. The Corpus tagger had 100% accuracy. The
columns correspond to the percentage of errors introduced. Relative accuracy degradation compared to
the 0% error level is given in brackets.

Tagger 0% 1% 2% 5% 10% 20%
Base 81.0 80.2 (0.9) 79.1 (2.3) 76.5 (5.5) 72.4 (10.6) 64.5 (20.3)
Brill 86.2 85.4 (0.9) 84.5 (1.9) 82.0 (4.8) 78.0 (9.5) 70.3 (18.4)
TnT 88.7 88.0 (0.7) 87.2 (1.6) 85.2 (3.9) 81.7 (7.8) 75.1 (15.3)

Table 2: Accuracy in percent from the parsing task. Parsing based on the Corpus tagger had 88.4%
accuracy. A baseline parser using the Corpus tagger had 59.0% accuracy.

INFP, NP, PP and VC. Also, since some tokens
are outside all phrases, we included an outside
category (O).

5 Results

The most important aspect of the accuracy of the
GTA parser is the performance of the underlying
tagger. Most taggers were quite robust against
ill-formed and noisy input as seen from Table 1.
For example, at the 20% error level, TnT de-
graded 12.7% and Brill degraded 15.2% relat-
ively to their initial accuracy of 95.5% and 94.5%,
respectively. The low degradation in performance
is most likely due to the robust handling of un-
known words in Brill and TnT, where the suffix
determines much of the morphological informa-
tion. Thus, if the last letters of a word are unaf-
fected by a spelling error, the tag is likely to re-
main unchanged. The robustness of the baseline
tagger was not as satisfactory as it guessed the
wrong tag in almost all cases (19.0% of 20%). The
baseline tagging accuracy for text without errors
was 85.2%.

For the parsing task, we obtained 86.2% accur-
acy using Brill and 88.7% accuracy using TnT,
as seen in Table 2. An interesting observation
is that the accuracy of parsing using Corpus,
i.e. perfect tagging, was 88.4%, which is lower
than that of TnT. The explanation is found in
the way the taggers based on statistics generalize
from the training data. The Corpus tagger ad-
opts the noise from the manual annotation of the
SUC corpus, which will make the task harder for

the parser. This is further substantiated below
when we discuss the baseline parser.

The degradation at the 20% error level seems
promising since the accuracy only dropped 15.3%
using the TnT tagger. On the other hand,
since the performance of TnT had already de-
graded 12.7% in tagging accuracy, the additional
15.3 − 12.7 = 2.6% was due to the fact that
the context surrounding a tagging error was erro-
neously parsed. This difference is the degradation
of the parser in isolation. Nevertheless, the per-
formance of the whole system is the most relevant
measure, since the most accurate tagger does not
necessarily provide the best input to the rest of
the parsing system. As stated earlier, since this
paper describes evaluation methodology only, we
do not address how the errors affected the syn-
tactic structure.

As a comparison, the baseline parser using the
Corpus tagger had 59.0% accuracy, while the
TnT tagger obtained 59.2%. This further indic-
ates that the difference between TnT and Cor-
pus is real and not just an idiosyncrasy of the
parsing system. A system not using any know-
ledge at all, i.e. the baseline parser using the Base
tagger, obtained 55.5% accuracy.

As seen from Table 3, the task of clause identi-
fication (CLB) was more robust to ill-formed input
than any other task with only 7.0% degradation
using TnT at the 20% error level. This may be at-
tributed to the fact that half the clause delimiters
resided at the beginning of a sentence and thus,
were unaffected by spelling errors. Of course, the

Tagger 0% 1% 2% 5% 10% 20%
Base 84.2 84.0 (0.2) 83.6 (0.7) 82.9 (1.5) 81.9 (2.7) 79.4 (5.7)
Brill 87.3 87.0 (0.3) 86.6 (0.8) 85.6 (1.9) 83.8 (4.0) 80.3 (8.0)
TnT 88.3 87.9 (0.4) 87.5 (0.9) 86.6 (1.9) 85.1 (3.6) 82.1 (7.0)

Table 3: F-score from the clause boundary identification task. Identification based on the Corpus
tagger had an F-score of 88.2%. A baseline identifier had an F-score of 69.0%. The columns correspond
to the percentage of errors introduced. Relative accuracy degradation compared to the 0% error level
is given in brackets.

Type 0% 1% 2% 5% 10% 20% Count
ADVP 81.9 81.3 (0.7) 80.6 (1.5) 78.6 (4.0) 75.3 (8.0) 68.4 (16.4) 1008
AP 91.3 90.5 (0.8) 89.8 (1.6) 87.0 (4.7) 83.1 (8.9) 74.3 (18.6) 1332
INFP 81.9 81.4 (0.6) 80.9 (1.2) 79.2 (3.2) 76.0 (7.2) 70.2 (14.2) 512
NP 91.4 90.9 (0.5) 90.2 (1.3) 88.4 (3.2) 85.2 (6.7) 79.3 (13.2) 6895
O 94.4 94.2 (0.2) 93.9 (0.5) 93.3 (1.1) 92.1 (2.4) 89.9 (4.7) 2449
PP 95.3 94.8 (0.5) 94.3 (1.0) 93.0 (2.4) 90.9 (4.6) 85.8 (9.9) 3886
VC 92.9 92.3 (0.6) 91.5 (1.5) 89.8 (3.3) 86.8 (6.5) 80.9 (12.9) 2562
Total 88.7 88.0 (0.7) 87.2 (1.6) 85.2 (3.9) 81.7 (7.8) 75.1 (15.3)

Table 4: F-scores for the individual phrase categories from the parse task. TnT was used to tag the
text.

baseline clause identifier was also unaffected by
spelling errors and obtained a 69.0% F-score for
all error levels. Clause identification at 0% er-
ror level achieved an 88.3% F-score (88.3% recall,
88.3% precision) using TnT.

We provide the F-scores for the individual
phrase categories using TnT in Table 4. We
see that adverbial (ADVP) and infinitival verb
phrases (INFP) are much less accurate than oth-
ers. They are also among the most sensitive to
ill-formed input. In the case of INFP, this may
be attributed to the fact that they are often quite
long and an error introduced near or at the infin-
ite marker or the verb is detrimental. In the count
column, we provide the number of rows in which
a given phrase type occurs in the annotation. For
example, in the case of NP, we count the number
of rows in which at least one NPB or NPI occurs.

Standard deviation was calculated for all ac-
curacy and F-score values at each error level, by
using data from the n runs. Standard deviations
were low for all tasks and were 0.13, 0.22 and
0.22 on the average for Tables 1, 2 and 3, respect-
ively. The maximum standard deviation was 0.70
for the 20% error level for clause boundary identi-
fication using TnT. Standard deviation was 0.49
on the average for Table 4. The only noticeable
exception was the infinitival verb phrase (INFP),
which had a 2.5 standard deviation at the 20%

error level using the Brill tagger.
Note that 15 000 words may not be sufficient

for a reliable conclusion on robustness. The ex-
periments here are primarily provided to illustrate
the evaluation method. The results from the eval-
uation are based on non-tuned output from the
parser compared to the manually annotated data.
Furthermore, there are still some minor inconsist-
encies between parser output and the annotation
scheme. This is of course a source of systematic
errors and will be dealt with in a near future.

6 Conclusions

We have described an automatic framework for
testing the robustness of tagging and parsing.
We introduced spelling errors resulting in non-
existing words in order to feed the parsing system
with ill-formed and noisy data. From this, the
different components of a parsing system can be
individually evaluated. With increasing levels of
noise, the performance of the system will inevit-
ably degrade. Here, we have addressed the differ-
ence between tagging the original, error-free text
and tagging noisy text and found that state-of-
the-art tagging is quite robust against ill-formed
input. Furthermore, we have discussed the ef-
fect of tagging performance degradation on the
over-all performance of parsing systems. Experi-

ments conducted on a shallow parser for Swedish
exhibited graceful degradation in over-all parsing
performance. To conclude, we advocate the use
of the proposed automatic evaluation method to
obtain fair and reliable measures of over-all pars-
ing system performance, as well as a measure of
performance of the individual components.

References

(Bigert et al. 03) J. Bigert, L. Ericson, and A. Solis.
Missplel and AutoEval: Two generic tools for auto-
matic evaluation. In Proceedings of Nodalida 2003,
Reykjavik, Iceland, 2003.

(Birn 98) J. Birn. Swedish constraint grammar. Tech-
nical report, Lingsoft Inc, Helsinki, Finland, 1998.

(Brants 00) T. Brants. TnT – a statistical part-
of-speech tagger. In Proceedings of ANLP-2000,
Seattle, USA, 2000.

(Brill 92) E. Brill. A simple rule-based part-of-speech
tagger. In Proceedings of ANLP-92, pages 152–155,
Trento, Italy, 1992.

(Carroll et al. 98) J. Carroll, T. Briscoe, and A. San-
filippo. Parser evaluation: a survey and a new pro-
posal. In Proceedings of LREC 1998, pages 447–454.
Granada, Spain, 1998.

(Damerau 64) F. Damerau. A technique for computer
detection and correction of spelling errors. Commu-
nications of the ACM, 7(3):171–176, 1964.

(Ejerhed 99) E. Ejerhed. Finite state segmentation of
discourse into clauses. In A. Kornai, editor, Exten-
ded Finite State Models of Language, chapter 13.
Cambridge University Press, 1999.

(Ejerhed et al. 92) E. Ejerhed, G. Källgren,
O. Wennstedt, and M. Åström. The Linguistic
Annotation System of the Stockholm-Ume̊a Project.
Department of Linguistics, University of Ume̊a,
Sweden, 1992.

(Gambäck 97) B. Gambäck. Processing Swedish Sen-
tences: A Unification-Based Grammar and some
Applications. Unpublished PhD thesis, The Royal
Institute of Technology and Stockholm University,
1997.

(Knutsson et al. 03) O. Knutsson, J. Bigert, and
V. Kann. A robust shallow parser for Swedish. In
Proceedings of Nodalida 2003, Reykjavik, Iceland,
2003.

(Kokkinakis & Johansson-Kokkinakis 99) D. Kokkina-
kis and S. Johansson-Kokkinakis. A cascaded finite-
state parser for syntactic analysis of Swedish. In
Proceedings of the 9th EACL, pages 245–248, Ber-
gen, Norway, 1999. Association for Computational
Linguistics.

(Li & Roth 01) X. Li and D. Roth. Exploring evidence
for shallow parsing. In W. Daelemans and R. Zajac,
editors, Proceedings of CoNLL-2001, pages 38–44,
Toulouse, France, 2001.

(Megyesi 02) B. Megyesi. Shallow parsing with PoS
taggers and linguistic features. Journal of Ma-
chine Learning Research, Special Issue on Shallow
Parsing(2):639–668, 2002.

(Menzel 95) W. Menzel. Robust processing of natural
language. In Proceedings of 19th Annual German
Conference on Artificial Intelligence, pages 19–34,
Berlin, Germany, 1995.

(Ngai & Florian 01) G. Ngai and R. Florian.
Transformation-based learning in the fast lane. In
Proceedings of NAACL-2001, pages 40–47, Carnegie
Mellon University, Pittsburgh, USA, 2001.

(Nivre 02) J. Nivre. What kinds of trees grow
in Swedish soil? a comparison of four annota-
tion schemes for Swedish. In Proceedings of
First Workshop on Treebanks and Linguistic The-
ories (TLT2002), pages 123–138, Sozopol, Bulgaria,
2002.

(Ramshaw & Marcus 95) L. Ramshaw and M. Marcus.
Text chunking using transformation-based learning.
In D. Yarovsky and K. Church, editors, Proceed-
ings of the Third Workshop on Very Large Corpora,
pages 82–94, Somerset, New Jersey, 1995.

(Tjong Kim Sang & Buchholz 00) E. Tjong Kim Sang
and S. Buchholz. Introduction to the CoNLL-2000
shared task: Chunking. In Proceedings of CoNLL-
2000 and LLL-2000, pages 127–132. Lisbon, Por-
tugal, 2000.

(Voutilainen 01) A. Voutilainen. Parsing Swedish. In
Proc. of Nodalida 01 - 13th Nordic Conference on
Computational Linguistics, 2001.

