
Royal Institute of Technology
Dept. of Numerical Analysis and Computer Science

The number field sieve

An integer factorization algorithm

by
Johnny Bigert

TRITA-NA-E0053

NADA

Nada (Numerisk analys och datalogi) Deptartment of Numerical Analysis
KTH and Computer Science
100 44 Stockholm Royal Institute of Technology

SE-100 44 Stockholm, SWEDEN

The number field sieve

An integer factorization algorithm

by
Johnny Bigert

TRITA-NA-E0053

Master’s Thesis in Computer Science (20 credits)
at the School of Computer Science and Engineering,

Royal Institute of Technology year 2000
Supervisor at Nada was Johan Håstad

Examiner was Johan Håstad

Abstract

The topic of this Master's thesis is factorization of large integers using the
number �eld sieve, the best factorization algorithm known today. We explain
the theory behind the algorithm giving examples of the algebraic structures
involved. We give a brief survey of an implementation of the algorithm,
which is later used in the experiments.

We try to improve the speed of the implementation by experimenting
with the sieving area, where we search for pairs (a, b) from which we form
relations. The faster we �nd the relations, the faster the speed of the algo-
rithm. We compare a rectangular sieving area to one following a plot of the
�height curves� of the norm, i.e. curves where the norm is constant. We also
use the de�nition of the norm to adapt the length of the a-interval, since dif-
ferent values of b have di�erent probabilities to form relations. Furthermore,
we investigate smoothness by approximating the smoothness of the norm as
compared to the random numbers with a normal distribution.

Talkroppssållet

En algoritm för faktorisering av stora heltal

Sammanfattning

Denna avhandling behandlar faktorisering av stora heltal med talkroppsållet,
den bästa kända faktoriseringsalgoritmen för närvarande. Vi förklarar teorin
bakom algoritmen och ger exempel på de algebraiska strukturer som används.
Vi ger en kort genomgång av en implementation av algoritmen som sedan
används i experiment.

Vi försöker förbättra hastigheten på implementationen genom experiment
med sållningsytan, där vi söker efter par (a, b) från vilka vi bildar relationer.
Ju snabbare vi kan �nna relationerna, desto snabbare blir algoritmen. Vi
jämför en rektangulär sållningsyta med en som följer de �höjdkurvor� som
bildas då man plottar en konstant storlek på normen. Vi använder även
de�nitionen av normen för att anpassa längden av a-intervallen eftersom olika
värden på b har olika sannolikhet att bilda relationer. Slutligen undersöker
vi glatthet genom att approximera glattheten hos normen i jämförelse med
slumptal med en normalfördelning.

3

4

Acknowledgments

First of all, I would like to thank my supervisor, professor Johan Håstad
for his always clear-sighted considerations and suggestions for improvement.
Without them, I would not have learnt half of what I did.

I am very grateful to my roommates, Olof Åsbrink who helped me with
various TEX questions and Joel Brynielsson, who expressly wanted to get into
the acknowledgments for his TEX knowledge. I got my practical knowledge of
the number �eld sieve programs with the help of Gunnar Andersson, Sta�an
Ulfberg, Lars Ivansson and Johan Håstad. They were always there when I
had topics I wanted to discuss. Also thanks to Torbjörn Granlund who made
me state my knowledge explicitly on the whiteboard. I had much use of his
math package GMP. Thanks to TEX master Lars Engebretsen for explaining
to me why my report looks the way it does. Thanks also to the other PhD
students and the sta� at Nada who are always nice and helpful.

Thanks to my friends Jakob Scott, Rickard Arnerup and Niclas Odljung
for reminding me that I was writing on my thesis every day, Niclas Holm
for his support in every way and my father, Sten Bigert, for proofreading an
endless amount of reports. To all the people that I have forgotten here: I
haven't forgotten you!

5

6

Contents

1 Introduction 9
1.1 Prime and composite numbers 9
1.2 Factorization methods . 9
1.3 An example of integer factorization 10

2 De�nition of problem 13
2.1 Background . 13
2.2 Purpose . 13
2.3 Outline of the Master's thesis 13

3 Theoretical aspects 15
3.1 Description of the NFS . 15

3.1.1 Outline of the NFS algorithm 15
3.1.2 Polynomials . 16
3.1.3 Algebraic number �elds 16
3.1.4 Ideals . 17
3.1.5 Norm of an algebraic number 18
3.1.6 Square algebraic numbers 19
3.1.7 The factor base . 19
3.1.8 Finding a square . 20
3.1.9 Square roots . 23
3.1.10 The homomorphism 23

4 Practical and implementational aspects 25
4.1 Introduction . 25
4.2 The CWI/Oregon software . 25

4.2.1 Polynomial �nders . 26
4.2.2 Root �nder . 26
4.2.3 The sieve . 27
4.2.4 Relation manipulation 28
4.2.5 Finding a linear dependency 29
4.2.6 Extracting the square root 29

4.3 Choice of the sieving area . 29

7

4.4 Implementation of a sampler 30
4.5 Experiments . 31

4.5.1 Sieve prerequisites . 31
4.5.2 Sieving a rectangle . 31
4.5.3 Implications of the greatest common divisor 33
4.5.4 Sieving a contour . 34
4.5.5 Smoothness of the norm 36

4.6 Implementation of a sieve . 38
4.7 Conclusions . 38

4.7.1 The sieving area . 38
4.7.2 Smoothness of the norm 38

A Dictionary 41

Bibliography 43

8

Chapter 1

Introduction

This Master's thesis is about the factorization of large integers and speci�-
cally, the number �eld sieve. In this chapter, we will say something about
integer factorization and give a small example.

1.1 Prime and composite numbers

We de�ne an integer to be prime if it is divisible only by itself and one. All
numbers that are not prime are called composite. For example, 5 is a prime
while 6 = 2 ·3 is composite. We call each prime divisor of a number a factor.
The factors of a composite number are unique if we ignore the ordering of
the factors.

The factorization of a number is the procedure of determining its factors.
For a long time, the factorization of numbers was of mere theoretical interest.
It became of practical interest when Rivest, Shamir and Adleman introduced
the RSA public-key cryptosystem [1] in 1978, which is based on the belief
that factorization is a hard computational problem. In other words, the
factorization of a number takes a huge amount of computer resources if the
number is large.

1.2 Factorization methods

Even though the factors of a composite number exist and are uniquely de-
termined, we have no way of determining them by looking at the number.
We have to use some algorithm, or step-by-step computing procedure.

If we have a range of numbers which we want to factor, we can use a
procedure called a sieve, originating from the sieve of Eratosthenes (see for
example [6]). Taking one prime p at the time, we note that it is a factor of
every pth number. When this has been done for all primes we have found
the factorization of each and every number.

9

To determine the factors of an arbitrary number N , there are two classes
of algorithms. There are those which have a running time that depends on
the size of the factors and those which have a running time depending only
on the size of N .

In the �rst class we �nd the most naive factoring algorithm, namely the
trial division algorithm. It simply tries to divide N with one prime at a time.
Since the second largest prime divisor of N can be of size

√
N , the running

time is O(
√

N). Furthermore, in the �rst class, we �nd the Pollard-ρ [11] and
the p−1 [11] factoring algorithms which both have better characteristics than
trial division. For example, Pollard-ρ runs in O(

√
p) where p is the second

largest prime divisor. The algorithms of this class are used to �nd small
factors of N since the running times depend on the size of the factors found.

In the second class we have, for example, themultiple polynomial quadratic
sieve [12] and the number �eld sieve [8]. They are both based on the idea
of �nding two integers x and y such that x2 ≡ y2 mod N which gives half
a chance that gcd(x − y, N) is a factor of N . These two algorithms have
better characteristics than those of the �rst class and are used when no more
small factors exist.

1.3 An example of integer factorization

To clarify the ideas of the previous section, we will factor an example number
using x2 ≡ y2 mod N . We choose N = 143 and want to determine its factors.

A �rst approach could be to simply write squares modulo 143, as follows:

122 ≡ 1 = 12

132 ≡ 26 = 2 · 13
142 ≡ 53
152 ≡ 82 = 2 · 41
162 ≡ 113
172 ≡ 3
182 ≡ 38 = 2 · 19
192 ≡ 75 = 3 · 52

202 ≡ 114 = 2 · 3 · 19.

In this case, we found squares on both sides in the �rst step. We get that
gcd(12 − 1) = 11, which is a factor of 143 = 11 · 13. Normally, we would
not be so lucky and we might have to search for a long time. Instead, if
we observe the prime factors of the right hand side, we see that some of the
factors are found in more than one row. For example, if we multiply 172

with 192 we get that 172 · 192 ≡ 3 · 3 · 52, which is square on both sides! We

10

s s mod 143 2 3 5 7 −1 2 3 5 7
128 = 27 −15 = −3 · 5 7 1 1 1
135 = 33 · 5 −8 = −23 3 1 1 3
150 = 2 · 3 · 52 7 1 1 2 1
168 = 23 · 3 · 7 25 = 52 3 1 1 2
175 = 52 · 7 32 = 25 2 1 5
288 = 25 · 32 2 5 2 1
300 = 22 · 3 · 52 14 = 2 · 7 2 1 2 1 1
336 = 24 · 3 · 7 50 = 2 · 52 4 1 1 1 2

Table 1.1. Factorizations of some numbers that have prime factors exclu-
sively below 7 both before and after reduction modulo 143.

get gcd(17 · 19 − 3 · 5, 143) = 11. Another example would be to multiply
172, 182 and 202.

To generalize the idea above, we use a technique involving matrices to
determine which equations should be multiplied together. Given an integer
s, we determine the factors of s and the factors of s mod N . For example:
336 = 24 · 3 · 7 ≡ 50 = 2 · 52. If we �nd even powers of the factors on both
sides of the congruence, we have two squares with the desired property. This
task becomes much easier if we choose to use only numbers having divisors
below 7, for example, and we call these numbers 7-smooth.

One way to �nd 7-smooth numbers would simply be to factor every inte-
ger from one and up. We chose eight of these numbers: 128, 135, 150, 168,
175, 288, 300 and 336. The factorization of each of the numbers is shown in
Table 1.1. Observe that we include -1 among the factors for the right-hand
side.

To �nd a square on both sides we need even powers of the divisors.
Therefore, we can add powers modulo 2. The matrix from Table 1.1 is given
modulo 2 in Table 1.2. We see that 150, 288 and 300 yield the desired
squares if multiplied together: 150 · 288 · 300 = (25 · 32)(2 · 3 · 52)(22 · 3 · 52) =
28 · 34 · 54 = (24 · 32 · 52)2 = 36002 ≡ 2 · 7 · 14 = (2 · 7)2 = 142 mod 143. This
gives us gcd(3600− 14, 143)=11.

Normally, one uses Gaussian elimination modulo 2 on the matrix to �nd
the rows that are to be multiplied.

11

s s mod 143 2 3 5 7 −1 2 3 5 7
128 = 27 −15 = −3 · 5 1 1 1 1
135 = 33 · 5 −8 = −23 1 1 1 1
150 = 2 · 3 · 52 7 1 1 1 ←
168 = 23 · 3 · 7 25 = 52 1 1 1
175 = 52 · 7 32 = 25 1 1
288 = 25 · 32 2 1 1 ←
300 = 22 · 3 · 52 14 = 2 · 7 1 1 1 ←
336 = 24 · 3 · 7 50 = 2 · 52 1 1 1

Table 1.2. The divisors from table 1.1 given modulo 2. The rows with the
arrows give a square in both s and s mod 143 if multiplied together.

12

Chapter 2

De�nition of problem

2.1 Background

Over the years, several algorithms for factorization have been proposed. The
latest theoretical proposition was issued by Pollard [8] in 1993, when the
number �eld sieve (NFS) was presented. The time complexity showed it to
be the asymptotically fastest algorithm ever for factoring. Implementations
of another algorithm, the multiple polynomial quadratic sieve (MPQS) [12],
had been successful with integers up to around 128 decimal digits. The NFS
was assumed to do much better than MPQS on larger numbers.

2.2 Purpose

As predicted, implementations of NFS did outperform all other algorithms
when numbers around 130 decimal digits were factored. In 1999, an imple-
mentation of the NFS from CWI/Oregon [7] factored a 155 digit decimal
number originating from RSA512. In December 1999, Nada received a copy
of the CWI/Oregon implementation on which this Master's thesis is based.

The question posed here is: Can the number �eld sieve implementation
be improved for speed? With greater speed, larger numbers can be factored.
From a theoretical point of view the purpose of this Master's thesis has been
to understand the NFS algorithm.

2.3 Outline of the Master's thesis

The report has been divided into two parts, theory and practice. The theoret-
ical part contains a description of the algorithm. Because of the mathemati-
cal nature of the thesis, a great deal of time has been spent in understanding
the aspects of the algorithm. The theory part is therefore work done by
others, interpreted and understood by us.

13

The practical part makes use of the CWI/Oregon software to answer a
number of questions concerning the theory and practice of the algorithm. To
some extent, the practical part of the Master's thesis has been to understand
the vast number of parameters of the software. To reduce the amount of time
spent on the experiments, we implemented a sampler that performed only
part of a full factorization. With the sampler we could estimate a few of the
algorithm characteristics, such as total running time, for several settings of
the algorithm parameters.

14

Chapter 3

Theoretical aspects

3.1 Description of the NFS

In this chapter, we describe how the number �eld sieve algorithm is used to
factor large integers. The algorithm makes use of concepts from algebraic
number theory to �nd the factors. In the NFS algorithm, the di�culty of the
problem does not depend of the size of the factors, but only on the number
to be factored.

In the following, some algebraic terminology is used and it is assumed
that the reader is familiar with some basic algebra. All concepts given in
italics when introduced are explained in the dictionary in Appendix A. For
a thorough explanation of the terminology, we refer to [5] or [10].

3.1.1 Outline of the NFS algorithm

Here, a short description is given of all steps of the NFS algorithm. The
individual steps, given in bold, will then be thoroughly explained in sections
of their own, so that all concepts can be understood.

We are given a large integer N and want to determine its factors. To
accomplish this, we want to �nd two integers x and y so that x2 = y2 mod
N . This gives us gcd(x− y,N) = s and with probability one half, s 6= 1 and
s 6= N implying that s is a factor of N .

First, we choose two polynomials and m ∈ Z such that

f1(m) = f2(m) = 0 mod N. (3.1)

If we take a complex root α of a polynomial, we can construct an algebraic
number �eld Q(α) and from that, an algebraic structure Z[α]. In Z[α] we
have elements on the form

∑
aiα

i, ai ∈ Z. We also de�ne a homomorphism
φ : Z[α]→ ZN taking α to m, that is, φ :

∑
aiα

i →
∑

aim
i.

With these preliminaries we can de�ne the objective of the algorithm,

15

namely to �nd γ1 and γ2 such that

(φ1(γ1))2 = φ1

(∏
(a,b)∈S

(a− bα1)
)

= φ2

(∏
(a,b)∈S

(a− bα2)
)

= (φ2(γ2))2

(3.2)
where α1 and α2 are the roots of polynomials 1 and 2, φ1 and φ2 are the
homomorphisms originating from polynomials 1 and 2, respectively, and all
factors are ideals. The speed of the algorithm is determined by how fast we
can �nd the set S of pairs (a, b), a, b ∈ Z.

To simplify operations on the elements of Z[α] when �nding S, we will
work with the norm of the number, which is in Q, instead of the number
itself. If an element of norm r is divisible by an element of norm s then s
divides r. To simplify further, we choose a large integer as a bound of the
norm of the divisors of γ. We call this large integer the factor base bound,
to be explained later.

In the algorithm, we actually �nd two squares γ2
1 and γ2

2 . From these,
we extract the square roots to get γ1 and γ2. If we de�ne x = φ1(γ1) and
y = φ2(γ2), we get x2 = y2 mod N and we have a factorization of N .

3.1.2 Polynomials

The �rst step of the NFS algorithm is to choose two polynomials with certain
properties. From these, we create the algebraic structures used by the NFS.

We choose two polynomials f1 and f2, each having the greatest common
divisor of the coe�cients equal to one. We want the polynomials to have a
common root modulo N , such that f1(m) = f2(m) = 0 mod N . They can
be assumed to be irreducible in Z since if f is reducible it can be written
f = gh, where either g is irreducible and can be chosen instead of f or g(m)
is a factor of N . The same applies to h. A polynomial is irreducible in Z if
and only if it is irreducible in Q [5], so we assume that both f1 and f2 are
irreducible in Q.

Note here that a polynomial of degree d has at most d roots of which
some are real and some are complex. The complex roots always appear in
conjugate pairs. Note also that an equation f(s) = 0 mod p has at most d
integer roots between 0 and p− 1 if p is prime.

3.1.3 Algebraic number �elds

From the polynomials of the previous section, we construct two algebraic
number �elds. The elements of these �elds are used to form the algebraic
structures on which the NFS algorithm is based.

Given f(x), a polynomial without solutions in Q, let α be a solution of
f(x) in an extension of Q. We de�ne an algebraic number �eld Q(α) as the
smallest ring containing both Q and α. Since α is a root of f(x) in Q(α) we
have f(α) = 0 and all operations can be done mod f(x).

16

To simplify the exposition in this thesis, we will assume that the poly-
nomials are monic, so that Z[α] introduced below is actually a number ring.
If the polynomial is not monic and Z[α] is not a ring, we refer to [8] for a
solution to this problem.

From the algebraic number �eld, we construct the number ring Z[α]
mentioned above, which is all polynomials in α with coe�cients in Z. As
in Q(α), all higher powers of α are reduced using f(α) = 0. The number
ring Z[α] does not necessarily have unique factorization since there might
exist elements that factor into irreducibles in more than one way. As an
example, if we take Q(

√
10) and the ring Z[

√
10], we have that 6 = 2 · 3 =

(4+
√

10)(4−
√

10), where all factors are irreducible (not shown here). If the
number ring Z[α] does not have unique factorization, this can be resolved as
explained in the next section.

For the NFS algorithm, we use the polynomial f and choose one arbitrary
root α ∈ C. Then, α generates an algebraic number �eld Q(α) and we get
our ring Z[α]. This is done for both polynomials, giving us two number rings.

3.1.4 Ideals

From the previous section we saw that unique factorization could not always
be obtained with the algebraic numbers in a ring R = Z[α]. To resolve this,
we introduce ideals that are subsets generated by one or more algebraic num-
bers. The ideals are closed under multiplication and addition with elements
of the ring. We �rst explain how to calculate with ideals before explaining
how unique factorization is obtained.

The ideal I generated by the algebraic numbers β1, β2, . . . , βn ∈ Z[α]
contains β1 ·Z[α]+β2 ·Z[α]+ . . .+βn ·Z[α] and is denoted by [β1, β2, . . . , βn].
An ideal generated by one algebraic number β is called a principal ideal and
is denoted by (β).

Multiplication of two ideals I and J gives a new ideal that contains
all �nite sums of products of elements of I and J . Division is de�ned as
follows: if I divides K then there exists an ideal J such that K = IJ . From
the de�nition of multiplication we can deduce that division is equivalent to
containment.

Norm, prime ideals and factorization

We de�ne the norm of an ideal Q as |Z[α]/Q|. For example, if we take
Q = [3, 1 +

√
10] in Z[

√
10] all elements are on the form 3(c1 + c2

√
20) + (1 +√

10)(d1 + d2

√
10) = a + b

√
10. To determine which numbers are in Q we

solve the linear equation system:

3c1 + d1 + 10d2 = a
3c2 + d1 + d2 = b

17

By subtracting the �rst equation from the second, we get 3(−c1 +c2−3d2) =
b − a, which is solvable if and only if b − a = 0 mod 3. It can be seen that
every number in Z[

√
10] can be written on the form 3(c1 + c2

√
20) + (1 +√

10)(d1 + d2

√
10)− k, which gives us 3(−c1 + c2 − 3d2)− k = b− a where

k = 0, 1, 2. Thus, we have three cosets in Z[α]/Q and the norm is N(Q) = 3.
A prime ideals is an ideal divisible only by itself and the entire ring.

Also, an ideal is prime if and only if it has a prime norm. For example, Q
above is a prime ideal since 3 is a rational prime. The ideals have unique
factorization into prime ideals [10].

Example of factorization into prime ideals

As an example of ideal factorization, we use the counterexample of unique
factorization in R = Z[

√
10] from Section 3.1.3. We have that 6 = 2 · 3 =

(4+
√

10)(4−
√

10), where all factors are irreducible in R. From the de�nition,
(2) = 2Z+ 2Z ·

√
10 and (3) = 3Z+ 3Z ·

√
10. If we de�ne P = [2,

√
10],Q =

[3, 1 +
√

10] and Q′ = [3,−1 +
√

10], which are all prime ideals, we get a
prime ideal factorization (2) = P2 and (3) = QQ′. Thus, (6) = P2QQ′ and
this factorization is unique up to the ordering of the factors. We see that
4 +
√

10 is in Q since 4 +
√

10 = 3 · 1 + (1 +
√

10) · 1 and similarly, 4−
√

10
is in Q′. Since Q contains the generator 4 +

√
10 of (4 +

√
10), we see that

Q contains (4 +
√

10) and therefore, Q|(4 +
√

10). By calculating the norms
(not shown here) N(P) = 2, N(Q) = 3 and N((4 +

√
10)) = 6 and using the

fact that the norm is multiplicative, we deduce that (4 +
√

10) = PQ and
similarly, (4−

√
10) = PQ′.

3.1.5 Norm of an algebraic number

The algebraic numbers are rather complex to work with, and instead we use
the norm of the number which have many good properties. This allows us
to work with rational numbers instead of algebraic numbers.

For the sake of completeness, we give the de�nition of the norm. The
norm of an algebraic number

∑
i aiα

i is de�ned as the product of the em-
beddings, that is,

∏
k (
∑

i aiθk(α)i), where α is a root of the polynomial.
In the NFS, we are interested only in the numbers on the form a − bα.

They have a simple structure of their norms and a small absolute norm value.
Let d be the degree of f . We de�ne

F (a, b) = bdf(a/b), (3.3)

a polynomial in a ∈ Z and b ∈ Z which is integer valued. The norm turns
out to be N(a − bα) = F (a, b)/c, where c is the leading coe�cient of f .
Since our polynomials need not be monic, the norm is a rational number.
Furthermore, the norm is multiplicative, that is, N(αβ) = N(α)N(β).

18

The norm of an ideal generated by an algebraic number γ satis�es

N((γ)) = |N(γ)|,

where the norm on the left is the norm of an ideal and the norm on the right
is the norm of an algebraic number. Thus, when calculating with numbers
on the form a− bα we use the norm of the algebraic number instead of the
ideal to simplify the calculations.

3.1.6 Square algebraic numbers

The objective of the NFS algorithm is to �nd two squares γ2
1 and γ2

2 of
algebraic numbers, one from each of the number rings from Section 3.1.3.
We want to �nd a set S of relations such that

(γ2
j) =

∏
(a,b)∈S

(a− bαj), (3.4)

where j = 1, 2 for the two number rings, respectively, and all factors involved
are ideals.

To �nd a square, all powers of the divisors must be even. The divisors
are prime ideals, which are chosen from a limited set described in the next
section. With a limited set of prime ideals, a method of �nding the members
of S can be constructed. This method is explained in Section 3.1.8.

3.1.7 The factor base

We limit the ideals we work with in the algorithm to a set of prime ideals
called the factor base, by determining an upper bound on the norms of the
ideals.

We choose a large integer value Bj , called the lower factor base bound,
for each of the two polynomials. We also choose an integer Lj ≥ Bj called
the upper factor base bound. We want to �nd a set S of (a, b)-pairs according
to equation 3.4, where all factors in γj have norm below Bj , except perhaps
for a few large primes between Bj and Lj . Allowing a few large primes to
be factors of the norm greatly increases the probability that a pair (a, b) is
included in S.

To simplify the exposure in this section, we will assume that Bj = Lj for
both polynomials. In the next section, we explain how these values are used
in the algorithm.

To see how the choice of Bj a�ects the factorization of γj we look at
how the roots of the polynomials are used to identify prime ideal divisors of
a− bα.

For every prime p ≤ Bj and r between 0 and p − 1, we identify each
of the solutions of fj(r) = 0 mod p with a pair (p, r), and we can have at
most degree(fj) pairs for each p. The prime ideals of Z[α] of norm p are in a

19

one-to-one correspondence with the pairs (p, r). That is, given a prime ideal
P, the map

Z[α]→ Z[α]/P ∼= Z/pZ (3.5)

takes α to r mod p and we have that p and r − α generate the ideal P.
Furthermore, the element

∑
siα

i is in P if and only if
∑

sir
i = 0 mod p,

and from this we conclude that if a− bα is in P then

a− br = 0 mod p. (3.6)

This only happens for one pair (p, r), giving us a method of determining to
which prime ideal the full power of p belongs.

Now, if we have γ ∈ Z[α] of norm M and p such that p|M , we know that
one of the prime ideals corresponding to a pair (p, r) divides γ. Our factor
base is made out of these prime ideals. In numbers, there are approximately
as many pairs as there are prime numbers below Bj , since each of the f(r) =
0 mod p has one solution per p on average.

3.1.8 Finding a square

As stated in section 3.1.6 we want to �nd a square algebraic number. This
is done with the factor base and some linear algebra.

In short, we want to construct two squares by assuring that every factor
appears an even number of times. This can be done by introducing a matrix
into which we insert the relations, and from the matrix we �nd a linear
dependency modulo 2. These steps are explained below.

The matrix

We de�ne a relation as a pair (a, b) for which F (a, b) is Bj-smooth except
perhaps for a few large primes between Lj and Bj .

Let each relation found constitute a row in a matrix, and let the columns
be the factor base elements. We have that the norm of each relation is a
product of primes ≤ Bj and perhaps some large primes that we will deal with
later. Speci�cally, each prime ideal identi�ed by equation (3.6) corresponds
to a column in the matrix, see Figure 3.1. If a, b and p satis�es (3.6), that
is, a = br mod p, we set the corresponding matrix entry to the largest k such
that pk|F (a, b). For each relation, this will �ll the matrix with the powers of
the divisors of the norm.

Quadratic characters

One problem with the norm is that a square norm does not imply that the
algebraic number is square. This is because the units have norm ±1, which is
square even though the unit itself need not be a square. As an example, take
Z(
√

3) generated by the polynomial f(x) = x2−3, and consider the element

20

nn(a , b) = (12, 5) 1 0 0 0 1 0 0 0

P P P P P P P11 21

1 1

2 2

3 3(a , b) = (2, 13)
(a , b) = (-3, 4)
(a , b) = (7, 2)

p p p p p1 k

km

0 0 1 0 0 2 0
0 1 0 0 0 0 0
3 0 1 0 0 0 1

0
0
0

Relations
Prime ideals
Prime numbers

P12 4122 23 31

2 3 4

Figure 3.1. An example of the matrix built from the relations found. The
prime numbers are two sets bounded by B1 and B2, respectively. The prime
ideals are identi�ed with the solutions of f(r) = 0 mod p, so that several
prime ideals can belong to a prime number. For each relation, at most one
prime satis�es a = br mod p, and therefore identi�es precisely one prime
ideal. For this r, the matrix entry is the largest k such that pk divides the
norm of the relation.

2 +
√

3. We have that N(2 +
√

3) = F (2,−1)/c2 = (−1)2((2
−1)2 − 3)/1 =

4− 3 = 1, which might lead us to believe that 2 +
√

3 is a square, but if we
solve x2 = 2 +

√
3 we get that x = ±(

√
6 +
√

2)/2 which is not in Z[
√

3]! We
deal with the unit problem by introducing so called quadratic characters.

We �rst observe that an integer cannot be a square if it is not square
modulo some given prime. The quadratic characters use this fact to ensure
that an algebraic number is square.

We make use of the Legendre symbol, de�ned as (cp) equals 1 if x2 = c
mod p is solvable and −1 otherwise. We want to determine whether a− bα
is square or not. We take a large prime q and �nd a number r < q such
that f(r) = 0 mod q. From this, we de�ne a homomorphism φ : Z[α] → Zq
taking α to r. If a− bα is a square, i.e. a− bα = γ2, we have that

φ(a− bα) = φ(γ2) = φ(γ)2 = x2 = a− br, (3.7)

where the last equality comes from φ(a− bα) = a− br. If (a−brq) = −1, we
know that a− br is not square modulo q and no x satis�es (3.7). Therefore,
a− bα can not be square. If (a−brq) = 1, we get no information. If we repeat
the calculations for many q and all results are 1, there is a good probability
that we have a square.

The results from the di�erent values of q are augmented to the matrix

21

rows as a 0 if (a−brq) = 1 and a 1 otherwise. With this additional information
the relation (a, b) is most probably square if all quadratic characters are 0.

Linear dependencies

Our only interest is if the product of our relations is a square, hence we want
to determine a set of relations such that the product gives us a row with no
odd element. Therefore, all calculations can be done modulo 2. We aim at
�nding at least as many relations as there are members in the factor bases
so that we are assured that a linear dependency can be found. We then have
a square of algebraic numbers in both factor bases and we call these γ2

1 and
γ2

2 .

Primes above the factor base bound

If we observe the integers between Bj and Lj we see that some will occur in
more than one relation. These relations can form new relations, if we seek
to match the large primes in pairs.

To convince ourselves that there exist prime ideals P that correspond to
each of the occurring large primes, we look at p and a/b. We see that r is
uniquely determined from (3.6), so that a

b = r mod p. Then the pair (p, r)
uniquely identi�es a prime ideal as explained in Section 3.1.7.

Free relations

If the polynomial f(x) = 0 mod p factors completely over Z, we have precisely
degree(f) roots, counted with multiplicity. We then have degree(f) prime
ideals, that correspond to the roots. From (3.6) we see that since a−brk = 0
mod p is ful�lled for each of the roots, we have that each of the prime ideals
Pk corresponding to (p, rk) is a divisor of the principal ideal P generated
by p. We also know that F (p, 0) = pd, so that P can have no more than
degree(f) divisors of norm p. Then P =

∏d
k=1 Pk, and we get a relation for

free in the matrix, namely (a, b) = (p, 0) with powers corresponding to the
multiplicity of each root.

Then, how often does f(x) = 0 mod p have degree(f) solutions? The
Galois group of a polynomial f is the group of permutations of the zeros of f
in R. From Galois theory, it is known that the answer to the question is 1/g
[13], where g is the order of the Galois group of f . With two polynomials
we have that 1

g1g2
of the primes would give rise to a free relation, where g1

and g2 are the order of the Galois groups of each polynomial, respectively.
Most often, the group of permutations of a polynomial with degree d is the
symmetric group Sd, i.e. all permutations of length d. For example, with two
such polynomials of degree d1 and d2 respectively, we get that approximately

1
d1!d2! of the primes should give a free relation.

22

3.1.9 Square roots

The next step of the NFS is to extract the square root of γ2
j to get γj . The

square root algorithm is not covered here but a few remarks can be made.
As the matrix is �lled with the exponents of each prime ideal, it would seem
as an easy task to divide all exponents by two to get the square root, but
the occurrence of units makes this infeasible. Also, the fact that ideals are
not principal poses a problem.

The algebraic number γ2
j is a product of a vast number of factors on the

form a − bαj , and written as a polynomial in αj , its coe�cients are enor-
mous. Therefore, it is not feasible to calculate the coe�cients and from them
compute the square root. Instead, Couveignes [4] proposed a method that
calculates the root modulo a few primes and then applies the Chinese re-
mainder theorem. Yet another method was given by Montgomery [7], which
puts part of the square in the numerator and part in the denominator and
iteratively extracts factors from the quotient. The algorithms aim at �nding
the prime ideal divisors of γ, the result is expressed as a set of generators of
the prime ideals, also including those occurring from the primes between Bj

and Lj .

3.1.10 The homomorphism

When the two square roots are found we need a way to map the algebraic
numbers to the integers modulo N . We therefore use a natural homomor-
phism φ : Z[α] → Z/NZ given by φ(

∑
i aiα

i) →
∑

i aim
i, where m is the

common root of the polynomials from Section 3.1. Simpli�ed, one can see
this evaluation homomorphism as replacing α with m. For example, if we
have m = 7 then φ(2 + 3α) = 2 + 3 · 7 = 23.

We apply the homomorphisms φ1 and φ2 from polynomials 1 and 2,
respectively, yielding φ1(γ1)2 = φ1(γ2)2 mod N . With a probability of one
half, we get that s=gcd(φ(γ1)− φ(γ2), N) 6= 1 or N and we have that s is a
non-trivial factor of N .

23

24

Chapter 4

Practical and implementational
aspects

4.1 Introduction

In this chapter we describe the di�erent parts of the NFS implementation
from CWI/Oregon. To determine if the algorithm can be improved for speed,
we do experiments with the norm and with the set from which we choose
the relations.

4.2 The CWI/Oregon software

The implementation from CWI/Oregon is divided into several programs,
each dedicated to a speci�c stage of the NFS algorithm. We list them here
and give a short description. The programs are then described in sections
of their own. The running times below are given for a 155 decimal digits
number.

Polynomial �nder The polynomial �nder searches for two polynomials
with good characteristics. It keeps improving the polynomials found
and must be stopped manually when the characteristics are satisfac-
tory. Typical running times are CPU weeks. The program can be run
in parallel.

Root �nder The root �nder is run once to prepare for the sieve. Typical
running time is CPU hours. The implementation can not be run in
parallel.

Sieve The sieve �nds the relations. Running time is CPU years and the
program is highly parallel.

25

Relation post processing The relations are �ltered to eliminate duplicate
and useless relations from the sieve. The program is run in serial and
takes about one CPU day. The memory demand is gigabytes.

Matrix and linear dependency The relation is inserted into a matrix
from which a linear dependency is found. Running time to �nd a
linear dependency can be CPU weeks and can not be run in parallel.

Square root From the linear dependency, two square algebraic numbers
are found. The square roots are computed using a serial program.
Running time is about one CPU day.

4.2.1 Polynomial �nders

Two polynomial �nders have been implemented. The �rst is based upon an
idea by Montgomery [7] that �nds two quadratic polynomials. The second
is from 1996 and �nds one polynomial of degree four or �ve and one linear
polynomial. All tests in this report are performed with the second program.

When choosing the polynomials, the main objective is to keep the norm
as small as possible. This is accomplished using the following ideas:

a) The coe�cients ought to be chosen so that the norm is as small as
possible over the sieving area (the set from which we choose the (a, b)-
pairs).

b) The polynomials ought to have many solutions to f(r) = 0 mod p for
small primes. This reduces the size of the norm when dividing out the
small primes as explained in Section 4.2.3.

c) The leading coe�cient ought to have many small factors. This is an
inherent property of the norm and is explained in the sieve section.

d) The gcd(leading coe�cient, second coe�cient squared) should be made
as large as possible. This is closely related to the above and explained
later.

e) The polynomials ought to have many small real roots. This is because
the nearer the quotient a/b is to a real root, the smaller the value of
the norm from equation (3.3).

4.2.2 Root �nder

The root �nder is not very interesting, it simply saves the solutions of fj(r) =
0 mod p for all primes ≤ Bj for both polynomials. This precalculation saves
a lot of initialization time for the sieve.

26

4.2.3 The sieve

The sieve is used to �nd the required number of relations as quickly as
possible.

We choose our relations from a set called the sieving area, originally
chosen to be a rectangle with a-values on one side and b-values on the other.
The sieving area has been subject to experiments, as explained in Section
4.3.

Description

We are interested in whether p divides F (a, b). This depends only on (a, b)
mod p, and we observe only coprime pairs of a and b. We get two cases, one
where b 6= 0 mod p and one where b = 0 mod p.

If b 6= 0 mod p, we know from (3.6) that the prime ideal corresponding
to (p, r) divides a− bα if a = br mod p. This means that

p divides F (a, b) if a = br mod p. (4.1)

On the other hand, if b = 0 mod p, then b−1 does not exist so a
b has no

meaning. We then turn to the de�nition of the norm. Let d be the degree
of the polynomial f , yielding

F (a, b) = bdf(a/b) = cda
d + cd−1a

d−1b + cd−2a
d−2b2 + ... + c0b

d. (4.2)

We see that, if b = 0 mod p, then F (a, b) = cda
d mod p. We then have that

if p|b and p|cd then p divides F (a, b) for all values of a. (4.3)

Observe that p can not divide a in this case since a and b are coprime.

Implementation

In the CWI/Oregon implementation the sieving is done by representing the
norms by an approximation of its logarithm. When calculating with loga-
rithms, division turns into subtraction which is favorable in a computational
sense.

One b is chosen and a large array of a-values is initialized with the log-
arithm of each norm minus the logarithm of gcd(b, cd) as implied by (4.3).
Then, for each prime p ≤ Bj we �nd a pair (a, b) satisfying a = br mod p,
and we step p, subtracting log(p) for each array element as shown by (4.1).
In this manner, the logarithm of all factors below Bj is subtracted from each
norm in the array.

In the CWI/Oregon software, this data type has eight bits so that a large
number of norms �t into the CPU caches.

27

Coe�cients of the polynomials

The norm can be made more likely to be smooth if the coe�cients of the
polynomials are chosen as explained in this subsection. If the leading coe�-
cient cd has square divisors p2 and p divides the second coe�cient cd−1, then
we conclude that if p|b then p2 divides F (a, b) as seen from (4.2). Of course,
this reasoning extends to higher powers of p, if the lower coe�cient has the
appropriate divisors.

Because of the symmetry between a and b, we see that the same applies
to a and the lowest coe�cient. If s=gcd(a, constant coe�cient of the polyno-
mial) is big, this leads to additional smoothness of the norm since s divides
F (a, b) for all values of b.

Finding the factors of the norm

When all factors are subtracted, the result of each array element is below a
small threshold if the norm is Bj-smooth. If a few large primes between Bj

and Lj are allowed, we choose a larger threshold. As an example, if we allow
two large primes, a suitable choice is log(L2

j). This is the case, since after
dividing out all primes below Bj we will either have two prime factors or one
large prime factor, and all factors found are between Bj and Lj as desired.
If we allow three large primes and take the threshold log(L3

j), the situation
is more complicated since all factors do not necessarily fall between Bj and
Lj .

When a relation has been marked as a candidate for being Lj-smooth,
the norm will be factored. The factors below Bj can be found with the two
criteria (4.1) and (4.3). If the remainder is not a prime, it is factored. A
relation that has an L1-smooth norm for the �rst polynomial f1 and an L2-
smooth norm for the second polynomial f2 is �led and later included in the
matrix. We consider ourselves to be done when the number of relations is
slightly more than the number of elements in the factor bases occurring in
the relations.

4.2.4 Relation manipulation

After the sieve, we �lter the relations to eliminate duplicate relations and
relations which are too heavy, i.e. have many factors and will therefore give
a less sparse matrix. The �lter also �nds singleton elements in the factor
base, that is, prime ideals only occurring once among the relations. It also
groups together relations containing factor base elements that can not be
used otherwise, for example, elements only occurring twice in all relations
found.

28

4.2.5 Finding a linear dependency

From the relations, a matrix is built using each of the remaining relations as
rows and each of the occurring factor base elements as columns. The �ltering
stage has assured that the matrix is as sparse as possible. Since we are only
interested in whether the result is a square or not, all manipulation of the
matrix is done modulo 2.

As the matrix is built, we introduce the quadratic characters as explained
in Section 3.1.8. We choose a set of q's and, for each relation, we append a
0 if the Legendre symbol is 1, and append a 1 otherwise. When the linear
dependency is found, the quadratic characters are all zero, which implies
that the algebraic number is likely to be square. The CWI/Oregon software
uses 32 quadratic characters.

Normally, one would use Gaussian elimination to �nd a linear depen-
dency, but with the size of the matrices it is not possible to store all the
matrix elements in memory, even if each element is represented by one bit.
Instead, the block Lanczos algorithm [3] is used, which is an iterative al-
gorithm that updates one row at the time, not keeping the full matrix in
memory.

When �nding a linear dependency, we want to �nd coe�cients {xi} such
that

∑
i xiai = 0, where the ai's are column vectors from our matrix A.

In matrix notation, we want to solve the equation Ax = 0. Unfortunately,
given to the block Lanczos, this yields the trivial solution x = 0. Instead,
we choose a random vector y and form b = Ay, then solve Az = b. Since
A(y + z) = 0, we �nd that x = y + z, where all operations are modulo 2.
Not all linear dependencies give rise to a factor of N , so we want to �nd at
least a few solutions to the linear equations.

4.2.6 Extracting the square root

The square root algorithm implemented in the CWI/Oregon software is the
algorithm by Montgomery as explained in Section 3.1.9. The implementation
makes use of the PARI software package [2] for algebraic manipulations and
extraction of the square root when the coe�cients have been reduced to a
reasonable size. The output from the square root algorithm is the factors of
N .

4.3 Choice of the sieving area

The sieving area is the range of a- and b-values, a, b ∈ Z, b > 0, from which
we try to �nd the relations. When speaking of the sieving area, a real root
r of a polynomial f is the line r = a/b, extending from the origin, such that
f(r) = 0. See Figures 4.1 and 4.2 for an example of a plot of a and b.

29

The choice of the sieving area will a�ect the size of the norms from both
polynomials. As explained in Section 4.2.1, we have one linear polynomial
and one of higher degree. Large values of a and b will not a�ect the norm
from the linear polynomial as much as the norm from the higher degree
polynomial. Thus, we will concentrate on �nding a good sieving area for the
higher degree polynomial.

If the sieving area is chosen properly the size of the norm is small, giving
us a higher probability that the norms are smooth and the running times
decrease. Experiments based on the ideas given below are found in Section
4.5. The main ideas were:

a) Sieve a polygon around the origin to cover the ground where the real
roots come together. If necessary, sieve a little wider for small b-values
since there are many relations there because of the small norm.

It may be di�cult to determine the size and shape of the sieving area.
Perhaps this could �rst be sampled with the line sampler to get a
picture of how the norms decrease.

b) Sieve on the real roots of the polynomials for as many b-values as prof-
itable.

The pro�t would of course depend on the slope on the side of the ridges.
As for any di�erentiable function, the values vary with the derivatives.

c) Within a certain area, let the length of the a-interval depend on the
gcd(b, leading coe�cient of the polynomial) so that some promising
b-values are more thoroughly investigated.

The idea here is to decrease the size of the norm by applying (4.3). If
the remainder is of reasonable size, there is a much greater chance that
it is B-smooth.

4.4 Implementation of a sampler

To minimize the running times needed, we implemented a parallel sampler
that uses MPI (message passing interface) [9], a parallel software package,
to run on several computers.

We wrote three programs to investigate the ideas about the sieving area in
the previous section. First, we needed a program that sampled a rectangular
sieving area. Second, we were interested in how the norm behaved near the
real roots of the polynomials. Third, we were interested in how the gcd(b,
leading coe�cient of the polynomial) a�ected the relation count.

The samplers were then used for the experiments in the next section.

30

4.5 Experiments

Most of the following experiments use the sieve together with the samplers
discussed in the previous section to answer some questions about the sieving
area and the norm. Throughout the sieve experiments we have used a 101
digit number

n = 1367422137 6761637153 8058299847 0528750457
7638778523 0230764380 1173554513 1921835577
8851619009 1643684532 9

with polynomials

f1 = −39601549612794148559671 + x
f2 = 13954338003944082133803480 +

4906668047110889964262 x +
−587274291267665623 x2 +

−23147725526270 x3 +
5559732360 x4.

The factors of the leading coe�cient of the fourth degree polynomial are
5559732360 = 23 · 32 · 5 · 7 · 13 · 17 · 67 · 149. The factors of the second highest
coe�cient are 23147725526270 = 2 · 5 · 17 · 5119 · 26599549.

4.5.1 Sieve prerequisites

There are a few things to determine before starting the sieve. We must
choose the factor base bounds Bj and Lj for both polynomials. These are
best determined experimentally, and a few examples of these bounds are
listed in the CWI/Oregon article [7] on which we based our choices for the
numbers we experimented with.

One must also choose an approximation of how many relations that
should be collected. As stated in [7], one approximation formula used is

no of relations = 0.8(π(L1) + π(L2)− π(min(L1, L2))/g),

where g is the product of the order of the Galois groups of the polynomials,
as discussed in Section 3.1.8.

4.5.2 Sieving a rectangle

In this section, we describe how we sieved to �nd all relations in a large
rectangle.

In the factorization of the 101 digit number, we chose L1 = L2 = 107

and B1 = B2 = 1.2 · 106. Then

no of relations = 0.8(π(L1) + π(L2)− π(min(L1, L2))/g)
= 0.8(664579 + 664579 + 664579/4!) ≈ 1.05 · 106.

31

The roots of the fourth degree polynomial were -2299.934432 and -10943.30080.
The norm has great probability of being small on the real root of a poly-
nomial as explained in Section 4.3 b), and thus we wanted the smaller root
to �t within the sieving area. The larger root was considered too big to �t
within the sieving area because of the growth of the a-values for big b-values.
We chose the sieving area to b ≤ 50000, |a| ≤ 1 · 108. The sieving area is
shown in Figures 4.1 and 4.2.

When the sieving was completed we had gathered about 1.05 · 106 rela-
tions. The total running time was 3.9 ·106 seconds or 46 CPU days on about
25 Sparc 5 Workstations, 333 MHz. Wall clock time was almost two days.

From observations of Figure 4.2, we could see that the sieving area chosen
above had quite a large norm in one of the corners. From the �gure we
deduced that a better rectangle would be b ∈ [1, 18000] and |a| ≤ 1.8 · 108

since the norm would then be bounded from above by about 42 digits instead
of 44. When sieving this area, all relations were gathered in 2.5 · 106 seconds
or 29.0 CPU days on the same computers as above, which is much faster
than the �rst rectangle. Wall clock time was about one and a half day.

0
10000

20000
30000

40000
50000

60000
70000

b

–2e+08
–1.5e+08

–1e+08
–5e+07

0
5e+07

1e+08
1.5e+08

2e+08

a

0

1e+44

2e+44

3e+44

4e+44

5e+44

Figure 4.1. Norm of the fourth degree polynomial. In the lightest area
around the origin, the norm is below 1 · 1040 and with every other curve the
norm increases with one power of 10. The two valleys are the real roots of
the polynomial.

32

1040

1041

1042

1043 1044

–2e+08

–1e+08

0

1e+08

2e+08

a

10000 20000 30000 40000 50000
b

Figure 4.2. The sieving area from Figure 4.1 seen from above. The curves
correspond to a constant level of the norm. The sieving area chosen for the
101 digit experimental number was b ∈ [1, 50000], |a| ≤ 1 · 108. We see that
this region cuts deep into areas with a large norm which most probably yield
fewer relations than corresponding areas with small norm. A sieving area
with smaller upper bound on the norm is b ∈ [1, 18000], |a| ≤ 1.8 · 108.

4.5.3 Implications of the greatest common divisor

In this section, we investigate how the gcd(b, cd), where cd is the leading
coe�cient of the polynomial, a�ects the number of relations found. We know
from equation (4.3) that gcd(b, cd) is a factor of the norm and therefore, the
remainder will be small. We also investigate how a and b, that are not
coprime, a�ect the speed of the sieve.

We investigated how a small prime divisor p of b actually decreased the
relation count. Given a p, we estimated the number of potential relations
by counting the number of a- and b-values with gcd(a, b) 6= 1. We were
also interested in how the gcd(b, cd) a�ected the relation count. For each
of the values p of interest, we counted the number of relations found when
gcd(b, cd) = p and gcd(b, cd) < p. In Table 4.1 we give the results for di�erent
values of p. For our fourth degree polynomial, we have that 2, 3, 5, 7, 13,
17, 67 and 149 are divisors of the leading coe�cient cd. The other values are
prime numbers close to the divisors of cd.

From the values in Table 4.1, we see that if p = gcd(b, cd) then the yield
was greater than one. This implies that it was more pro�table to sieve values
of b such that p|b than those with p6 |b, if we could sieve the same amount of

33

potential relations independently of p. Unfortunately, the sieve also spends
time on the relations with gcd(a, b) 6= 1.

When using the sieve, we wanted to �nd the maximum amount of rela-
tions per time unit. Even though we had a greater yield for small primes
p, the time spent on the relations that had gcd(a, b) 6= 1 gave us a lower
relation count per time unit. Thus, we wanted to maximize the potential
relations searched per time unit, taking the yield and speed of the sieve into
account. To test these ideas, we used an ad hoc formula that did not take
into account that the norms increase non-linearly. We set the length of the
a-interval for a given b to

lengthb = length · potential relations for p|b
potential relations for p6 |b · yield · sieve speed, (4.4)

where p is the smallest divisor of b. The speed of the sieve is about the same
for all p|b except for p = 2, where the speed of the sieve is about 1.8 times
faster because of an implementational feature. The values are given in Table
4.1.

To compare with the sieving of a rectangular area in the previous section,
we sieved a similar area using variable lengths of the a-intervals. We chose
b ≤ 18000 and used |a| ≤ 1.8 · 108 as the original length of the a-interval.
When all b-values had been sieved, we had collected 885447 relations in 2.2 ·
106 CPU seconds, or 25.9 CPU days, which is 12% faster than the rectangle
sieved but with 16% fewer relations found. Thus, with these polynomials,
the rectangular area is better.

4.5.4 Sieving a contour

A small norm has greater probability of being smooth than a large one.
Therefore, in theory, a rectangular sieving is not optimal if we want to include
the roots in the sieving area. In practice, the sieve is optimized for large a-
intervals which can decrease the running times when sieving a rectangle. In
this section we present the experiments we did with a non-rectangular sieving
area.

By observing Figure 4.3, we see that the norm can be bounded to about
42.5 decimal digits by using the contour indicated. We sieved this area and
collected 959958 relations in 28.7 ·106 CPU seconds, or 33.2 CPU days, to be
compared with the 29 CPU days for the rectangle sieved. For this example
number and polynomial, we had no increase in speed. This is because of the
rectangular shape of the contours near the origin where almost all relations
needed can be found. In the experiment we found only 10% of the relations
when sieving the triangles covering the roots of the polynomial.

34

p p|b p6 |b Sieve Yield Interval
2 0.385 0.772 1.8 1.095 0.983
3 0.400 0.600 1.0 1.011 0.674
5 0.432 0.540 1.0 1.107 0.886
7 0.452 0.527 1.0 1.207 1.035

11 0.472 0.519 1.0 0.871 0.792
17 0.486 0.516 1.0 1.540 1.450
19 0.498 0.516 1.0 0.898 0.852
67 0.509 0.515 1.0 2.167 2.142
71 0.509 0.515 1.0 0.907 0.898

149 0.514 0.515 1.0 2.562 2.561
151 0.514 0.515 1.0 0.999 0.999
997 0.529 0.515 1.0 0.891 0.916

Table 4.1. Experiments with the greatest common divisor. The second
column is the density of pairs (a, b) for which gcd(a, b) = 1 with p|b. The
third column is the density for b with p6 |b. The fourth is the estimated speed
of the sieve when p|b. The �fth is the density of relations when the same
number of pairs (a, b) with gcd(a, b) = 1 is sieved. The last column is the
length of the a-interval sieved to obtain the maximum number of potential
relations searched per time unit.

1040

1041

1042

1043 1044

–2e+08

–1e+08

0

1e+08

2e+08

a

10000 20000 30000 40000 50000
b

Figure 4.3. Sieving a contour. The sieving area is chosen so that the largest
norm is as small as possible while �nding the relations needed.

35

4.5.5 Smoothness of the norm

The smoothness of the norm determines how fast the relations can be gath-
ered and therefore, the speed of the algorithm. We wanted to examine the
smoothness of the norm as compared to the smoothness of an arbitrary num-
ber. Another interesting aspect was how smooth the norm was after applying
equation (4.3).

For the random numbers, we chose �ve arbitrary numbers and checked
the consecutive million numbers for smoothness. For the norm, we chose
�ve consecutive b-values and then sieved one million a-values for each. The
experiment with the reduced norms was much like the norm experiment
except that we used three hand picked b-values.

The results showed that the norm was several times smoother than an
arbitrary number, and so also in the case with the reduced norms. All values
are given in Table 4.2. Remember here that the smoothness of the norm from
one polynomial does not su�ce to form a relation since it is necessary for
both norms to be smooth.

The additional smoothness of the norm over an arbitrary number is an
interesting property of the polynomial. We know from equation (4.1) that
if a = br mod p then p divides F (a, b), where r is a root to f(r) = 0 mod
p. Each prime p ≤ Bj gives us a stochastic variable Xp = log(p) with
probability cp/p, where cp is the number of roots for p. With cp = 1 we have
a stochastic variable for a random number. If we introduce X =

∑
p Xp,

we have that X of the digits of a large number is Bj-smooth. The expected
value is

E(X) = E
(∑
p≤Bj

Xp

)
=
∑
p≤Bj

E(Xp) =
∑
p≤Bj

cp · log(p)
p

,

where all p are prime.
With the norms from the fourth degree example polynomial, we had

E(X) = 7.365. For the random numbers (that is, cp = 1), we got E(X ′) =
5.518. The standard deviation was D(X) = 10.094 and D(X ′) = 9.774,
respectively. We assumed that the probability of a number being Bj-smooth
followed a normal distribution N(E(X), D(X)) and N(E(X ′), D(X ′)), re-
spectively. We wanted to compare this approximation with the experimental
values to get an explanation of the big di�erence in the smoothness between
a random number and the norm.

To give an example, we use the 36 digit decimal numbers. We used the
bounds Bj = 1.25 · 106 and Lj = 107 from the previous experiments. We
wanted the numbers to have a remainder below L2

j when all primes below
Bj were divided out. Actually, this is not the same as a number being Bj-
smooth with at most two large primes, and we dealt with this as explained
below.

36

log10 DBj DLj DL2
j

Norm Predicted Reduced
30 0.20% 0.22% 4.69% - 0.48% -
31 0.13% 0.15% 3.51% - 0.33% -
32 0.090% 0.10% 2.60% - 0.23% -
33 0.060% 0.070% 1.92% - 0.16% -
34 0.038% 0.046% 1.39% - 0.10% -
35 0.026% 0.033% 1.00% - 0.073% -
36 0.016% 0.020% 0.72% 0.12% 0.045% 0.10%
37 0.012% 0.014% 0.52% 0.11% 0.033% 0.078%
38 0.0079% 0.010% 0.36% 0.082% 0.022% 0.050%
39 0.0040% 0.0057% 0.25% 0.044% 0.010% 0.039%
40 0.0031% 0.0047% 0.17% 0.028% 0.0082% 0.023%
41 0.0014% 0.0024% 0.12% 0.018% 0.0035% 0.019%
42 0.0013% 0.0016% 0.084% 0.016% 0.0030% 0.014%
43 0.0010% 0.0010% 0.054% 0.010% 0.0023% 0.0085%
44 0.0006% 0.0009% 0.041% 0.0079% 0.0011% 0.0051%

Table 4.2. Smoothness of the norm and random numbers. The �rst column
is the number of decimal digits. The next three columns are experimental
values of the density of Bj-smooth numbers with at most two large primes ≤
Lj, Lj-smooth numbers and numbers with remainder ≤ L2

j after dividing out
primes ≤ Bj , respectively. The �fth column is how many of the norms from
the fourth degree polynomial that are smooth and the sixth is the predicted
density of relations. The last column is how many smooth numbers there are
when the norm has been reduced using equation (4.3). The sizes of the last
column are after the reduction explained in the text.

When evaluating the density of the normal distributions between 36 −
2 · log10(Lj) = 22 and 36 we got I = 0.02013 and I ′ = 0.00854. From Table
4.2 we have that the density of Bj-smooth numbers with at most two large
primes was DBj = 0.00016 while the density of numbers with remainder L2

j

after having divided out all primes below Bj was DL2
j

= 0.0072. The latter
corresponds well with I ′ = 0.00854 as predicted. From this, we estimated
the number of norms that are Bj-smooth with at most two large primes to
be

I ·
DBj

DL2
j

= 0.02013 · 0.00016
0.0072

= 0.00045,

which should be compared to the value 0.0012 from Table 4.2. The di�erence
could perhaps be due to the additional smoothness of the norm from equation
(4.3).

37

4.6 Implementation of a sieve

To get a better understanding of how the sieve works, an implementation was
made as shown in algorithm 1. The implementation was of mere theoretical
interest and not used in any of the experiments.

The implementation is quite straightforward and uses all the details dis-
cussed in Section 4.2.3. The array is initialized at line (3) with the logarithm
of the gcd(b, leading coe�cient of polynomial) subtracted from the norm,
making use of equation (4.3). Line (8) �nds the �rst occurrence of a satis-
fying a = br mod p from equation (4.1) and then log(p) is subtracted from
every pth element of the array in lines (9)�(11).

When log of all factors have been subtracted, the array elements are
checked for potential smoothness at line (13) using the threshold from Sec-
tion 4.2.3. The factors are then found at lines (14) and (17) using the same
techniques as in lines (3) and (8). If all factors are below the factor base
bound for large primes Lj for both of the polynomials, the relation is ap-
proved and is sent to output.

4.7 Conclusions

4.7.1 The sieving area

The experiments dismissed most of the suggestions made in Section 4.3, and
it appears as if a rectangle would be a good basis for the sieving area. The
experiments with the contours from Section 4.5.4 gave no improvement in
speed over the rectangular shape. From the experiments with the greatest
common divisor, we had the same result.

The results from the three experiments had almost the same outcome
measured in relations per time unit. With a polynomial having a contour
that is not as easy to approximate with a rectangle, the performance of the
contour experiment might be better.

When observing Figure 4.2, we see that the norm increases with a large
power of a. The approximative formula (4.4) does not take such growth into
account. A more elaborate formula should use this knowledge to �nd an
interval for each b-value so that the largest norm is kept as small as possible.

4.7.2 Smoothness of the norm

In Section 4.5.5 we used a normal distribution to �nd an approximation of
the smoothness of the norm. The approximation was good for the random
numbers and gave a low estimate of the density of relations for di�erent sizes
of the norm.

38

Algorithm 1: An implementation of the sieve of the NFS
Input: The b-value to be sieved, upper and lower bounds for
the a-interval, two polynomials p1 and p2 and the factor base
bounds Bj and Lj for both polynomials.
Output: Relations (a, b) where the norms from both poly-
nomials are smooth.
Sieve(b, amin, amax, p1, p2, B1, B2, L1, L2)
(1) foreach a = amin . . . amax
(2) foreach i = 1 . . . 2
(3) arrayi[a − amin] ← Log(Norm(a, b, pi) -

Gcd(b, leading coe�cient of pi))
(4) foreach a = amin . . . amax
(5) foreach i = 1 . . . 2
(6) foreach prime number p ≤ Bi

(7) foreach solution r of pi(r) = 0 mod p
(8) a′ ← First-a-Equal-br(amin, p)
(9) while a′ ≤ amax
(10) arrayi[a′−amin]← arrayi[a′−amin] -

Log(p)
(11) a′ ← a′ + p
(12) foreach a = amin . . . amax
(13) if array1[a − amin] below threshold from L1

and array2[a− amin] below threshold from L2

(14) factors1 ← Find-Factors(a, b, p1)
(15) if found factor above L1 among factors1

(16) continue
(17) factors2 ← Find-Factors(a, b, p2)
(18) if found factor above L2 among factors2

(19) continue
(20) Output-Relation(a, b, factors1, factors2)

39

40

Appendix A

Dictionary

For any concept not covered here, we refer to [5] and [10].

Algebraic number A real number that is a root to some polynomial with
coe�cients in Q. All numbers that are not algebraic are called tran-
scendental.

Algebraic number �eld Given a polynomial of degree d with a root α, we
get an algebraic number �eldQ(α) which is the smallest �eld containing
both Q and α. The numbers in an algebraic number �eld can be seen
as polynomials in α and coe�cients in Q. For example, 5− 7

2α + 2α2,
and d is at least 3.

Embedding An embedding is a homomorphism from Q(α) to C, mapping
each root to a given root. For example, if we have x2 − 2 = 0 with
roots ±

√
2 and an embedding θ : x→

√
−2 we have that θ(3+4

√
2) =

3 − 4
√

2. A polynomial with n roots have one embedding per root,
numbered θ1, θ2, . . . , θn.

Field A ring where all nonzero elements have a multiplicative inverse. For
example, the rational numbers Q.

Homomorphism A map φ : R → R that satis�es φ(ab) = φ(a)φ(b) and
φ(a + b) = φ(a) + φ(b) is called a ring homomorphism on the ring R.

Ideals An ideal I is a subset of a ring R with the property that aI ∈ I and
Ia ∈ I for all a ∈ R. That is, an ideal is closed under multiplication
and addition with all elements of the ring.

Irreducible element Element that is not divisible by any other element
than a unit and itself.

Number ring Given a monic polynomial with root α, a number ring over Z
is a subset of an algebraic number �eld Q(α) that forms a ring, written

41

Z[α]. The subset is a ring rather than a �eld since not all elements
have to have an inverse.

Ring A set of elements associated with two operations, normally called
addition and multiplication. The operations have to satisfy a set of
conditions (not given here). One example of a ring is the integers Z.

Smooth A number is called k-smooth if all its prime factors are less than
k. For example, 15 = 5 · 3 is 5-smooth while 14 = 7 · 4 is not. An
algebraic number is called k-smooth if its norm is k-smooth.

42

Bibliography

1. L. Adleman, R. L. Rivest, and A. Shamir. A method for obtaining digital
signature and public-key cryptosystems. Communication of the ACM, 21(2),
1978.

2. C. Batut, D. Bernardi, H. Cohen, and M. Olivier. User's Guide
to PARI-GP. Distributed with the system from anonymous FTP at
ftp://megrez.math.u-bordeaux.fr/pub/pari/, last visited in June, 2000.

3. D. Coppersmith. Solving linear equations over GF(2): Block lanczos algorithm.
Linear algebra and its applications, (192):33�60, 1993.

4. Jean-Marc Couveignes. Computing a square root for the number �eld sieve.
Lecture notes in mathematics, 1(1554):95�102, 1993.

5. John B. Fraleigh. Abstract algebra. Addison-Wesley, 1999.

6. David Hawkins. Mathematical sieves. Scienti�c American, 199(6):105�??, De-
cember 1958.

7. R. Marije Huizing. An implementation of the number �eld sieve. Technical
report, CWI, 1995.

8. A. K. Lenstra, H. W. Lenstra Jr., M. S. Manasse, and J. M. Pollard. The
number �eld sieve. Lecture notes in mathematics, 1(1554):11�42, 1993.

9. ANL Mathematics and Computer Science. User's Guide to MPI. Home page
at http://www.msc.anl.gov/mpi/index.html, last visited in June, 2000.

10. Rickard A. Mollin. Algebraic number theory. CRC Press LLC, 1999.

11. J. M. Pollard. A monte carlo method for factorization. BIT, 3(15):331�334,
1975.

12. Carl Pomerance. The quadratic sieve factoring algorithm. In T. Beth, N. Cot,
and I. Ingemarsson, editors, Advances in Cryptology: Proceedings of EURO-
CRYPT 84, volume 209 of Lecture Notes in Computer Science, pages 169�182.
Springer-Verlag, 1985, 9�11 April 1984.

13. Ian Stewart. Galois theory. Chapman and Hall, Ltd, 1973.

43

